
MTH 264 Introduction to Matrix Algebra - Summer 2023.

LN1A. Vectors in Rn, Vector Operations, and Geometric Interpretation.

These lecture notes are mostly lifted from the text Matrix and Power Series, Lee and Scarborough, custom 5th

edition. This document highlights which parts of the text are used in the lecture sessions.

Part 1. Vector Spaces.

Definition 1A.1. Vector Spaces.

A vector space is a set composed of the following:

(a) a collection of elements called vectors;

(b) a collection of elements called scalars;

(c) a scalar multiplication function that takes in a vector and a scalar and returns a vector;

(d) a vector addition function that takes in two vectors and returns a vector;

such that certain properties called vector space properties/axioms are satisfied.

Note that this definition of a vector space is very abstract and if you take a linear algebra course, this is the

definition you’ll be working with. However, in this class, we’ll focus on a specific vector space (i.e. Rn defined below)

so we don’t have to use this abstract definition.

Definition 1A.2. Vector Space Axioms/Properties

A1. Commutativity of Vector Addition. For all vectors u,v: u+ v = v + u;

A2. Associativity of Vector Addition. For all vectors u,v,w: u+ (v +w) = (u+ v) +w;

A3. Zero Vector Identity. There exists a zero vector 0 such that for all vectors u, u+ 0 = u;

A4. Additive Inverses. Every vector u has an additive inverse denoted −u satisfying u+ (−u) = 0;

A5. Scalar Multiplication Identity. There exists a scalar 1 such that for all vectors u, 1u = u;

A6. Vector Distributivity over Scalar Addition. For all vectors u and scalars a, b: (a+ b)u = au+ bu

A7. Scalar Distributivity over Vector Addition. For all vectors u,v and scalars a, a(u+v) = au+av;

A8. Scalar Associativity over Scalar Multiplication. For all vectors u and scalars a, b, (ab)u = a(bu);

While it is not critical that you know the names of these properties, I’ve included them so it’s easier to reference

them in explanations. Additionally: if we were to talk about vector space axioms in the general sense, there is a lot

of nuance in the choice of notation. For example, 1 refers to the identify of the set of scalars – which if the set of

scalars is not R or C, 1 may be different. There is also technically a difference between the additive inverse −u and

the product (−1)u but it can be proven that those two are equal.

We won’t test you on these nuances since this is not a linear algebra course. As said earlier, we’ll be focusing

on the vector space Rn so most of these properties should be relatively easy to see as a consequence of the properties

of R.
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Definition 1A.3. Vectors in Rn.

Fix n ∈ N. The vector space Rn is the vector space with the set of real numbers R as scalars and the set of

ordered lists of n real numbers as vectors. Note that vectors in Rn are typically denoted as v = (v1, v2, ..., vn),

i.e. components are indexed by the numbers {1, 2, ..., n}.

Vector addition and scalar multiplication on Rn are defined respectively below.

u+ v = (u1 + v1, u2 + v2, ..., un + vn) and ku = (kv1, kv2, ..., kvn)

For brevity, we denote v being a vector as v ∈ Rn and k being a scalar as k ∈ R.

For this course, we’ll mainly focus on the case of n = 2 and n = 3 for graphical applications; and n ≤ 4 for

linear systems. Also, observe that we haven’t defined vectors as either row vectors or column vectors (in the matrix

sense). This is intentional since all the vector space properties are applicable regardless of presentation. When we

consider matrix multiplication later, we’ll justify why we prefer vectors to be column vector form.

Theorem 1A.4. Rn is a vector space.

The vector space Rn, as defined above, satisfies all the vector space axioms with

(a) Zero vector is given by 0 = (0, 0, ..., 0), i.e. all components are zero;

(b) For a vector u = (u1, u2, ..., un), the additive inverse −u is given by −u = (−u1,−u2, ...,−un).

(c) The scalar identity is the usual 1 ∈ R.

Often, we also represent vectors as linear combinations of other vectors.

Definition 1A.5. Linear Combination and Span

Let V = {v1,v2, ...,vk} be vectors. Then, a linear combination of V is any vector of the form

a1v1 + a2v2 + ...anvk for any scalars a1, a2, ..., ak.

The set of all linear combinations of V is called the span of V and is denoted by span(V ).

For R2 and R3, there is a special set of vectors that will allow us to use a different representation of vectors.

Definition 1A.6. Standard Basis Vectors

The standard basis vectors for R2 is the set {i, j} with i = (1, 0) and j = (0, 1). Similarly, the standard

basis vectors for R3 is the set {i, j,k} with i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1).

Observe that there is some abuse of notation here since i can either represent (1, 0) or (1, 0, 0). However, if we

consider that i is the vector in Rn with 1 as its first coordinate and 0 everywhere else, then our definitions of i agree

for R2 and R3. In this course, when we refer to i, it’s usually clear from context if we’re working in R2 or in R3. The

same applies to j.

Theorem 1A.7. Alternate Representation of Vectors in Rn

Let v = (a, b) ∈ R2. Then, v = ai+ bj. Similarly, let w = (a, b, c) ∈ R3. Then, w = ai+ bj+ ck.
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You may see in the homework exercises that we may switch between the coordinate-wise representation of

vectors and the linear combination representation of vectors with respect to the standard basis vectors. We provide

an example below.

Example 1A.7.1. The vector (3t, 4t2+1, 6t−3) for some t ∈ Rmay be expressed as (3t)i+(4t2+1)j+(6t−3)k.

While I personally do not prefer this notation, it’s important that you know how to work with it when information

is presented in this manner.

Part 2. Geometric Interpretation of Vectors.

Convention 1A.8. Graphical Interpretation of Vectors in Rn.

We typically interpret vectors in Rn as coordinates in n-space (e.g. the Cartesian plane in the n = 2 case).

When convenient, a vector (i.e. a set of coordinates) either represents a point or an arrow from the origin to said

point. In the latter case, a vector carries direction information with direction determined by its components.

Since n-space admits vectors as coordinates, we can talk about n-space and the vector space Rn inter-

changeably.

In the following image, vectors are considered points with vector components as the coordinates. The image on the

left is on the Cartesian plane, i.e. 2-space and the image on the left is on 3-space.

This gives us the following interpretations on vectors and on vector operations.

Interpretation 1A.9. Direction Similarity and Reversal

Let v ∈ Rn be a nonzero vector. If k > 0, then kv points in the same direction as v. If k < 0, then kv

points in the opposite direction as v.

Interpretation 1A.10. Parallel Vectors.

Let u,v ∈ Rn be vectors. Then, u and v are parallel if and only if there exists k ∈ R with k ̸= 0 such that

u = kv. In other words, u and v are parallel if and only if u is a nonzero scalar multiple of v.

Observe that from that statement, the zero vector is parallel to every other vector. Therefore, for most appli-

cations, we often need to specify that u and v are nonzero vectors.

Interpretation 1A.11. The Parallelogram Rule.

Let u = (u1, u2, ..., un),v = (v1, v2, ..., vn) be points in Rn or equivalently, arrows from the origin to said points.

The Parallelogram Rule states that the vector u+ v is the point resulting from traveling from the origin 0

in the direction to u and then in the direction of v.
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Interpretation 1A.12. The Triangle Rule.

Let u = (u1, u2, ..., un),v = (v1, v2, ..., vn) be points in Rn or equivalently, arrows from the origin to said points.

The Triangle Rule states that the vector u− v represents the arrow/direction from v to u. In other words,

let P,Q be points on Rn with coordinates p,q respectively, Then, the vector q− p represents the arrow
−−→
PQ.

The image below represents the previous two interpretations on the vectors x and y:

Part 3. Operations on Vectors in Rn.

We’ll talk about four operations on vectors on Rn: (1) norm/magnitude, (2) the dot product, (3) projections,

and (4) the cross product. Note that these operations are outside the vector space structure and are inherent to Rn.

To start with, the length of a vector in Rn.

Definition 1A.13. The Norm of a Vector in Rn

Let v = (v1, v2, ..., vn) ∈ Rn. Then, the norm of v, denoted ||v|| or sometimes |v|, is given by

||v|| =
√
v21 + v22 + ...+ v2n.

The norm of a vector is also called the magnitude or length of said vector.

Theorem 1A.14. Properties of Norms in Rn

(a) (Absolute Homogeneity) For any vector v ∈ Rn and scalar k ∈ R, ||kv|| = |k|||v||.

(b) (Positivity) For any vector u, ||u|| ≥ 0.

(c) (Positive-Definiteness) v = 0 if and only if ||v|| = 0.

(d) (The Triangle Inequality) For any vector u,v, ||u+ v|| ≤ ||u||+ ||v||.

With a notion of length, we can define what a unit vector is.

Definition 1A.15. Unit Vectors

A vector v ∈ Rn is a unit vector if and only if ||v|| = 1.

We give vectors of length 1 a name since they can be very useful in calculations as you’ll see later on. For

example, the standard basis vectors for R2 and R3 are all unit vectors.
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Corollary 1A.16. Finding Unit Vectors

Let v ∈ Rn be a nonzero vector. Then,
1

||v||
v is a unit vector.

Then, the dot product on Rn.

Definition 1A.17. The Dot Product in Rn

Let u = (u1, u2, ..., un),v = (v1, v2, ..., vn) ∈ Rn. Then, the dot product of u and v, denoted as u · v or as

⟨u,v⟩, is given by

u · v = ⟨u,v⟩ = u1v1 + u2v2 + ...+ unvn.

Observe that the dot product takes in two vectors as input and returns a scalar as output.

While I personally prefer the notation ⟨u,v⟩, the text uses the dot notation. It may look like the notation u · v
may be ambiguous when the expression is mixed in with other things, e.g. does ku ·v mean (ku) ·v or k(u ·v)?, the
theorem below allow us to ignore about such ambiguity since the result will be the same regardless. Note that these

properties doesn’t apply to all vector operations.

Corollary 1A.18. Equality of The Dot Product and the Squared Norm on Rn

||v||2 = ⟨v,v⟩ for all v ∈ Rn.

Theorem 1A.19. The Properties of the Dot Product in Rn

DP1. Commutativity. For all vectors u,v: ⟨u,v⟩ = ⟨v,u⟩.

DP2. Distributivity over Vector Addition. For all vectors u,v,w, ⟨u,v +w⟩ = ⟨u,v⟩+ ⟨u,w⟩

DP3. Compatibility with Scalar Multiplication. For all vectors u,v and scalars k, ⟨ku,v⟩ = ⟨u, kv⟩ =
k ⟨u,v⟩.

DP4. Zero Identity. For all vectors u, ⟨u,0⟩ = 0.

Lastly, we give a geometric identity.

Theorem 1A.20. Dot Product and Angles between Vectors

Let u,v ∈ R2. Let θ be a determination of the angle between u and v. Then, ⟨u,v⟩ = ||u|| ||v|| cos θ.

Observe that we state that θ is some determination of the angle between u and v. That is, it doesn’t matter

whether the angle is measured counterclockwise or clockwise or whether we start measuring from u or from v, the

identity still applies. To confirm this, recall the properties of the cosine function.

Corollary 1A.21. Parallelism in terms of the Dot Product

Let u,v ∈ Rn be vectors. Then, u and v are parallel if and only if ⟨u,v⟩ = ±||u|| ||v||. More specifically, (1) u

and v point in the same direction if and only if ⟨u,v⟩ = ||u|| ||v||; and (2) u and v point in opposite directions

if and only if ⟨u,v⟩ = (−1)||u|| ||v||.

This is an immediate result from the theorem since for parallel vectors, θ is either θ = 0 or θ = π.
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The previous theorem motivates the following definition.

Definition 1A.22. Orthogonality

Let u,v ∈ Rn. We say that u and v are orthogonal, denoted as u ⊥ v, if and only if ⟨u,v⟩ = 0.

Additionally, a set of vectors V = {v1,v2, ...,vn} is orthogonal if and only if V is pairwise orthogonal. That

is, for any pairs vi,vj with i ̸= j, vi ⊥ vj.

Observe that the definition of orthogonal does not exclude the zero vector and by properties of the dot product,

we can conclude that the zero vector is always orthogonal to any vector. For this reason, we usually make sure to

describe vectors being nonzero and orthogonal when necessary.

With the dot product above, we can calculate projections of vectors along other vectors. But first, we need to

define what a projection is.

Definition 1A.23. (Orthogonal) Projections and Components

Let v ∈ Rn and let e ∈ Rn be a unit vector. The component compev of v along e is the unique scalar k ∈ R
such that v − ke ⊥ e. The vector ke is called the (orthogonal) projection projev of v along e.

This definition can be extended for a non-unit vector a ∈ Rn by considering the unit vector
1

||a||
a, that is,

compav = k such that

(
v − (k)

1

||a||
a

)
⊥ a and projav = (k)

1

||a||
a.

Observe that the definition above only works when a ̸= 0 and that when v = 0, we can immediately conclude

that k = 0. The main reason why we consider projections is that it allows us to decompose vectors into orthog-

onal components. We write orthogonal in parenthesis since we’ll consider other projections later when we discuss

transformations on Rn. However, when talk of projections along a vector (i.e. we only care about direction), we

always mean the above definition.

Theorem 1A.24. Projections and Components in terms of the Dot Product

Let v ∈ Rn be a vector and a ∈ Rn be a nonzero vector. Then, the component and projection of v along a are

given by the following formulas:

compav =
⟨v,a⟩
||a||

and projav = (compav)
a

||a||
=

⟨v,a⟩
||a||2

a =
⟨v,a⟩
⟨a,a⟩

a

Lastly, we introduce the cross product on R3. Observe that the cross product is only defined on R3 and not

generally on Rn. Therefore, when we invoke the cross product in this course, there is the assumption that we’re

working in R3.

Definition 1A.25. Cross Product on R3

Let u = (u1, u2, u3),v = (v1, v2, v3) ∈ R3 be vectors. The cross product u× v of u and v is given by

u× v = det

 i j k

u1 u2 u3

v1 v2 v3

 = (u2v3 − u3v2)i+ (−u1v3 + u3v1)j+ (u1v2 − u2v1)k.
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Do observe that unlike the dot product, the cross product results in a vector as output.

Observe that unlike the definitions given above, the definition of the cross product is determined by a formula

(instead of the formula being a theorem). While it is possible to define the cross product by its properties, we won’t

do that in this course. We’ll only use the cross product to find normal vectors of planes as listed in a theorem later

since this course focuses on matrix algebra. If you were to take a course on vector calculus (e.g. MTH 254 at Oregon

State), then you will talk about the cross product in more detail.

Additionally, the formula for the cross product involves something called the determinant of a matrix A,

denoted by det(A). We will cover more of that term later in the course after we cover linear transformations. For

now, you can ignore the middle part of the equation.

We can give a characterization of parallel vectors using the cross product.

Theorem 1A.26. Parallel Vectors under the Cross Product

Let u,v ∈ Rn be vectors. Then, u and v are parallel if and only if u× v = 0.

The previous result gives us that for all vectors a ∈ R3, a× a = 0 since any vector is parallel to itself.

Lastly, we include some properties of the cross product that may help us in calculation.

Theorem 1A.27. Properties of the Cross Product

(a) Anti-Commutativity. u× v = (−1)(v × u) for all vectors u,v ∈ R3.

(b) Compatibility with Scalar Multiplication. (ku)×v = u×(kv) = k(u×v) for all vectors u,v ∈ R3

and scalars k ∈ R.

(c) Distributivity under Vector Addition. a× (b+ c) = (a×b) + (a× c) for all vectors a,b, c ∈ R3.

There are more properties/results involving the cross product (e.g. the cross product is not associative but you

can use something called the Jacobi identity). If you’re interested, you can use the corresponding Wikipedia article

(linked here) to learn more. You shouldn’t need more than the properties I’ve listed above for this course.

Part 4. Representations of Lines and Planes.

The interpretation of vectors as points lets us describe lines on R2 and R3 in terms of vector expressions. Before

we start, we want to clarify some terminology.

Convention 1A.28. Parametric Functions and Implicit Equations

In this course, there are generally two ways we can describe a set of points in Rn.

(a) A parametric function or a parametrization describes a set of points as an image of some function.

Here, the image of a function is the set of all outputs based on the range of possible inputs.

(b) An implicit equation on Rn describes a set of points by testing all points on Rn on some equation

or some set of equations. A point is part of the set if and only if the evaluation of the equation on said

point results in a true statement. We may also say that the implicit equation is the equation of the

set of points.

You’ve seen applications of these before, although you may have not said the terms explicitly.

Example 1A.28.1. Let f : R → R be a function. Then, the graph of f(x) is the set of points (x, f(x)) on the
Cartesian plane. In other words, the parametric equation F : R → R2 by x 7→ (x, f(x))
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is a parametric function for the graph of f(x).

Example 1A.28.2. Let r > 0. The graph of the function f(x) =
√
r2 − x2 is the upper-half circle on the

Cartesian plane centered at the origin with radius r.

Example 1A.28.3. Let r > 0. The equation (x− h)2 + (y− k)2 = r2 is an implicit equation that describes a
circle on R2 centered at the point (h, k) with radius r. Here, we refer to coordinates in R2

as (x, y).

The following results will be about lines.

Theorem 1A.29. Parametrization of Lines

Let L be a line on R2. Let r0 represent any point on the line and let d represent an arrow parallel to the line.

Often, we call the vector d the direction vector of the line. Then, the parametric equation r : R → R2 given

by

r(t) = r0 + td

describes the line L. Furthermore, the vector d is unique up to multiplication by a nonzero scalar. This result

applies to R3 as well.

Example 1A.29.1. The x-axis on R2 can be described using the parametric function r(t) = t(1, 0). Similarly,
the y-axis admits a parametrization of s(t) = t(0, 1).

Corollary 1A.30. Parametrization of Lines by y = mx+ b

Let L be a line on R2. The line L is the graph of the function y = mx + b with m the slope of L and b the

y-intercept if and only if L admits the following parametrization:

r(t) = r0 + td with r0 = (0, b),d = (1,m).

This result also applies for d = (x0, y0) if the slope m can be expressed as m =
y0
x0

since the direction vector

d and the slope m are both unique up to multiplication by a nonzero scalar. In other words, the slope of L

determines its direction vector and vice-versa.

Corollary 1A.31. Two points define a line

Let L be a line and let x,y represent distinct points in L. Then, L admits the following parametrization:

r(t) = x+ t(y − x).

In other words, the vector y − x results in the direction vector of L.

This result is similar to how two only need two points to express a line in point-slope form.
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The following results will be about planes.

Theorem 1A.32. Parametrization of Planes

Let P be a plane on R3. Let p0 represent any point on the plane and let d1,d2 represent two vectors parallel

to the plane but not parallel to each other. Then, P admits the parametrization p : R2 → R given by

p(t, s) = p0 + td1 + sd2.

We can call the vectors d1 and d2 direction vectors of the plane. These direction vectors are not uniquely

identified by the plane.

Example 1A.32.1. The xy-axis on R3 admits the parametrization p(t, s) = (0, 0, 0) + t(1, 0, 0) + s(0, 1, 0). It
also admits the parametrization q(t, s) = (0, 0, 0) + t(1, 1, 0) + s(−1, 1, 0).

For this course, we often will not make use of this parametrization of the plane because there are an infinite

number of choices for the vectors d1 and d2 (even considering nonzero multiples) as shown in the example above.

However, there is a representation of the plane that is, in some sense, unique.

Theorem 1A.33. Normal Vectors

Let P be a plane on R3. Then, there exists a nonzero vector N such that the vector N is perpendicular to

p−q for all vectors p,q ∈ P , i.e. the vector N is perpendicular to any direction vector of P . Furthermore, the

vector N is unique up to multiplication by a nonzero scalar. We call the vector N to be the normal vector

of P .

Please see below for an illustration. Observe that the normal vectors presented below labeled n1 and n2 are scalar

multiples of each other. In this case, n2 = kn1 for some k ∈ R negative. Also, observe that normal vectors also

represent direction, i.e. they don’t carry position information of the plane. A starting point is required. This is

similar to how the direction vector d of a line only carries direction information and you need an initial position r0
to determine the line.

The two results below are tools we can use the find this representation.

Corollary 1A.34. Calculation of Normal Vectors

Given two non-parallel direction vectors d1,d2 of a plane P , the normal vector N of P is given by N = d1×d2

where × is the cross product.
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Corollary 1A.35. Equations of Planes

Let P be a plane in R3. Let p0 = (x0, y0, z0) be a point in P and let N = (Nx, Ny, Nz) be the normal vector

of P . Denote points in R3 as x = (x, y, z). Then, P is described by the implicit equation

N · (x− p0) = 0 or equivalently Nx(x− x0) +Ny(y − y0) +Nz(z − z0) = 0.

Observe that x − p0 describes a direction vector of P and since x can stand for any vector on the plane, it

represents all possible direction vectors.
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